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j 5Y79  1 The energy arising from the hyperfine interaction, the interaction with the 

magnetic field and the cross term between them have been studied for ortho H, 

at c3rU state. The cross term gives rise to a first order correction of the g, 

values which accounts for the discrepancies between the theoretical zeroth order 

g, and the experimental values. The interactions a re  expressed a s  products of 

irreducible spherical tensors and Racah's method is used to derive all the diag- 

onal and off diagonal matrix elements. The case of rotational level, N = 1 , is 

presented in detail. The coupling constants of hyperfine structure have been 

evaluated by using a single configuration electronic wave function for c3rU 

state of H,. 

'\, 

IN TRODUC TION 

The odd rotational levels of ortho H, and the even rotational levels of para 

H, of the c3ru state a re  metastable with a life time of the order of milliseconds. 

Licnten'v2 measured tne fine strucnrre spiiiiiiigb a i i ~  tlie g values of tiie rota- 

tional level N = 2 of para H, to a high precision by atomic beams magnetic 

resonance method. The hyperfine splittings and the g, values of the N = 1 level 

J 

*Presently at the Theoretical Division, Goddard Space Flight Center, NASA. 
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of ortho H, have recently been measured by Lichten and Brooks.3 Since hydro- 

gen molecule is the lightest diatomic molecule, pure Hund's case4 b coupling of 

angular momenta can be applied to a very good approximation. The properties 

of the c3vu state has therefore been of great theoretical interest. The fine 

structure of this state has been studied by Fontana' and by Chiu? Its hyperfine 

structure has been studied by Frey and Mizuschima: and the relative life time 

of the fine structure levels due to the perturbation of other electronic states 

has been studied by Chiu.8 

The fine structure separations a re  of the order of 5000 Mc/Sec216 which 

is not very large in comparison with the hyperfine separations (of the order of 

500 Mc/Sec). The second order corrections to the hyperfine energies will 

therefore be large. Recent measurements indicate that the measured g, values 

differ considerably from the zeroth order (gk')) values where the perturbations 

from the nearby fine structure levels have been neglected. These differences 

are mainly due to a nonvanishing cross term of the hyperfine interaction and the 

interaction of the molecule with the magnetic field. The corrections to the g, 

values from this cross term will be of the first  order (gi1)  ) , and they can take 

on large values. 

In section 1 of this paper we will discuss these corrections on gF values. 

The diagonal and off diagonal matrix elements of the hyperfine interacting 

Hamiltonian will be derived in section 2. In section 3 we will work out the 

details for the case of rotational level N = 1, namely the second order energy 

corrections E(2) and the corrections on g~ will be given for all the hyperfine 

states. A set of coupling constants which have been evaluated numerically from 
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a single configuration electronic wave function6 for the c37rU state will be given 

in the last section. 

1. ENERGY CORRECTIONS AND g, CORRECTIONS 

The perturbing Hamiltonian, H' , of a diatomic molecule due to its hyperfine 

interaction (qfs) and its interaction with the external magnetic field (b) is 

the following: 

H '  = H h f s  -t H, , 

where 

H h f s  = H I  (h f s )  + H 2  (h f s )  -t H 3  (hfs )  

and 

The indices i ( = 1, 2) refer to the two electrons and the indices ,B( = a, b) refer 

to the two nuclei. Zi and zi are the orbital anguiar Irluiiidiitiiil iziid the spi:: ~f the 

electron i ; I is the spin of the nucleus ,B; g, = 0.003038 for proton and a is the 

fine structure constant. 

I 

I 
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H, is the interaction of the magnetic moments of the molecule with the ex- 

ternal magnetic field, 

where po is the Bohr magneton; S is the total electronic spin, S = S + S, ; N 

is the total rotational angular momentum which is the resultant of pure rotational 

angular momentum 2 and the projection of electronic orbital angular momentum 

along the figure axis A ;  I is the total nuclear spin, I = I, + I, ; and _.- H is the 

external magnetic field. S and N will couple to give the total electronic angular 

momentum J , J = N t S , and J will couple with - I to give the total angular mo- 

mentum 1 of the molecule, 

h .-I - >l- 

- Y  rr .%. 

vn "..- 

v" L1 .  -' . %. 

F = J t I .  - .x .- 

Due to the closeness of the fine structure separation, there a re  mixings 

among the levels of same F but different J I s .  In a zero magnetic field, the 

wave function of a hyperfine level (F, m ) within a fine structure level J (for a 

given rotational level N of ~ 3 7 ~ "  state) is expressed up to first order correction 

as, 

e 

F 

where +:, F,  rnF is the ortho normal zerothorder wave function for level (JF, mF) 

of the c37ru state where both F and J a re  good quantum numbers. In the pres- 

ence of a very weak magnetic field the energy of this hyperfine level is therefore 

(up to second order correction) the following, 
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where 

The first and the second terms on the right hand side of Eq. (1-5) a re  the first 

order energy, E::; (hf s ) ,  and the second order energy, E\*& (hf s) , respectively 

due to the hyperfine interaction and, 

-z J'JJ 
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g(F0) (J) is the zeroth order g, value when both F and J a re  good quantum 

numbers. The first term on the right hand side of (1-7) is the first order cor- 

rection, gL1) (J) , which can be of comparable magnitude to that of gp) (J) 

due to the energy separation in the denominator is not large. The second term 

in the RHS of Eq. (1-7) is the second order correction, g$*) (J) , which is small. 

The reduced matrix elements in Eq. (1-6) and Eq. (1-7) are  defined by Wiper -  

Eckart'ctheoreml0 as follows, 

where Tf) is the component of the Lth rank irreducible tensor T(L), and 

C(FLF'; m p n ' )  is the Clebsch-Gordan'S coefficient:' 

2. MATRIX ELEMENTS 

To obtain the hyperfine energy separations and the corrections on g ,  values, 

one needs to evaluate the diagonal and the off diagonal matrix elements of the 

interacting Hamiltonian H'. For Hund's case b diatomic molecule, the angular 

momentum N, S and I are  well defined with respect to the space fixed coordinate 

system. The matrix elements of H, over the molecular wave function can there- 

fore be easily evaluated.'* H, (h  f S) is the sum of the scalar products of the 

electronic angular mornentum-ei and the nuclear spin I. For matrix elements 

diagonal in total nuclear spin:, one can wri te  H , ( h f  s) in the following form, 
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where X' refers to the fixed space coordinate system. By considering the above 

expression as a scalar product of two tensors of first rank, one can evaluate the 

matrix elements of H 1  (hf S )  as  follows, 

= ( -1)I+J' -F [ (2J '  + 1 ) ( 2 1 + 1 ) ] ' / 2 W ( J I J ' I ;  F1) 

where W(J I J '  I;  F 1) is the Racah's coefficientf3 and I = 1 for ortho H,. The 

reduced matrix element ( I  1111 w 11) = [ I ( I  t 1)]1/2 = fi . After (1 /  rfb)  w-1 4. (x') * 

been transformed from fixed coordinate system (5') into molecular moving 

coordinate system (5) , the reduced matrix element of ( l/r!p ) Zi ( 6 )  is evalu- 

ated as  follow^.'^ 
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where <( 1/ rfp) xi z> is to be evaluated in the molecular system (9 over the 

electronic wave function of c3nU states, the axis z is the figure axis. The matrix 

element of HI (hf s )  is therefore, 

("T,, F J ' I N  \HI (h f s ) l  3 ~ u ,  F J I N  ) 

I = (-l)Ntl-F [6(2J' + 1)  (2J + 1) (2N + 1 ) /  N(N + l)] ' I 2  

X W ( J l J ' l ; F l ) W ( N J N J ' ;  l l ) ~ ,  

where J '  = J , J ? 1 

<( l/r:p ) Zi z> and it is defined in Eq. (2-9) below. 

and 2 is the coupling constant in terms of the integral 

H ,  (hf s)  is the contact interaction of electron spin with nuclear spin. It can 

be written into an equivalent form for matrix elements diagonal in I and S ,  

H, ( h f s )  = a2/3) + i p )  ,s - 1 .  
i , P  

The matrix element of H, (hf s) is similarly decomposed into a product of Racah's 

coefficient, and reduced matrix elements, 

( F  J '  I N S I S - I 1 F J I N S )  
..N .b\ 

= ( -l)N-S-F [( 2J' + 1) (2J + 1)  (21 + 1) (2s + l ) ]  ' I 2  

x W(JIJ' 1; Fl)W(SJSJ'; N1) (I  I ]  ,- I 1 )  I )  ( S  I I % I I  S) 
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(,nu, FJ' N IH, ( h f s )  

= (  

, FJN ) 

l)N-F-' 6 [( 25' t 1) (2J f l ) ]  ' I 2  W( JlJ'  1; F1) 

x W( 1JlJ'; N1) 

where P_ is in terms of the integral (8 (rip)> over the electronic wave function 

and i t  is defined in Eq. (2-9) below. 

H, (hf S )  represents spin-spin interaction between electrons and nuclei. 

For matrix elements diagonal in S and I , it is equivalent to write H, (h f  s) as, 

Since the doubly degenerate 7~ state is a linear combination of A = + 1 state and 

A = - 1 state, and the matrix element of H, (hf s) is nonvanishing between state 

of A = t 1 and state of A = - 1, we therefore have, 

(,Tu, FJ'IN I H,(hf s) I ,nu, FJIN) 

= (FJ'INS, A = 1 IH,(hfs) IFJINS, A = l )  

- (FJ'INSA 1 IH, ( h f s )  1 FJINS, A = - l), 

for odd rotational level (N = odd) of ortho H,. l5 

s u m  of HiP(hf s), 

If one expresses H,(hf s) as a 

H, ( h f s )  = H i p  ( h f s )  
i , B  
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where HjP (hf s) is a scalar product of two first rank tensors and its matrix 

element can again be decomposed into a product of Racah's coefficient and 

reduced matrix elements. 

( F J ' I N S A '  IH,'P(hfs)l F J I N S A  ) 

= - (gI a2/8) (-1)1+J'-F[(21 + 1) (2J'+ l)]", W(IJIJ ' ;Fl)(I  ) I  I 1 1  I) 

where (I ( 1  I ( (  I )  = [I(I + 1)]1/2 and I = 1 for ortho H,. Let, 
.h.. 

where x(1) is a spherical tensor of the first rank and it can be constructed from 

a first rank spherical tensor S (  l )  and a second rank spherical tensor - C(2)(8ipcp' ip) 

where C i c ) ( B ' y ' )  = (4n-/5)1/2Y2(B'cp'). We therefore have," 

where C( 12 1; p.mp, m) is the Clebsch-Gordanscoefficient, l2 and B l p  and cp' 

a r e  the polar and azimuth angles of zip with respect to space fixed coordinate 

system. The constant k = 

iP 

can be obtained by considering the case of m = 0 .  

The reduced matrix element of 

reduced matrix element of C(? 1 ( B l p  y: )and of S , and a g j symbol. By using 
1P 

are  then decomposed into the product of 
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the relation of (S 1 1  S 1 1  S) = [S(S t 1) 3 v2 and S = 1 for triplet electronic state, the * 
16 reduced matrix element of x ( ' ) / r fP  may be evaluated as follows, 

vv- 

The above 9 j symbol is a sum of the products of Racah's coefficients.16av l7 For 

the case of J '  = J,  J +_ 1 

ple expressions, 

the 9 j symbol can be expressed into the following sim- 

[ 4 + N ( N + l ) - J ( J + l ) ]  [ 3 J ( J + l ) + N ( N + l ) ]  - 1 2  

12 [5N( N + 1) ( 2 N  + 1) ( 2N + 3) ( 2N - 1) J(  J + 1) ( 2J + 1)]1/2 

[ ( J + N + 3 )  ( N + J ) ( J - N + 2 ) ( N -  J+1)]1'2 [ 3 ( J + 1 ) 2 - N ( N + l ) - 6 ]  

1 2 [ 5 N ( N +  1) ( 2 N +  1) ( 2 N +  3) ( 2 N -  1) (J + 1) (25 + 1) (2J t 3)]'i2 
(2-4) 

After a proper iransIul'iiiatioii of the fkcd C C C ~ ~ ~ ~ I ? & P  f Q' rn' > into the moving 

molecular coordinate (8. ,'p ) we have,14 

'-iP T i p  

i P  i P  



where <C(-" (eip yip) /r$> is independent of the molecular rotation and is to be 

evaluated over the electronic wave function of the c3nu state of H,. By substi- 

tuting (2-2), (2-3), (2-4) and (2-5) into (2-1) one obtains the matrix element for 

H, (h f s) in the following, 

(,rU, F J ' N I H 3 ( h f s ) 1 3 r u ,  F J N )  = 

2 7 0 N ( N  t 1 ) ( 2 N  t 1) (2J '  t 1) (2J  t 1) 
( 2 N  - 1) ( 2 N  t 3) 

( - l ) J ' tF  W ( l J 1 J ' ;  F1) 

1 1  

J '  J 1 

N(N t 1) c - 5 4  2 (" N 2) (2-6) 

where J '  = J,  J f 1, and the coupling constants c and d - -  are  defined in (2-9). 

Combining the matrix elements for HI (hf s ) ,  H, ( h f  s )  and H 3 ( h f  s) we have the 

matrix elements for qfs as follows, 

[4 + N(N -t 1) - J ( J  + I)] [3J(J f 1) + N ( N +  I)] - 12 
+ [2 f J(J f 1) - N(N f l ) ]b+ 2 ( 2 N  - 1) ( 2 N  + 3)  

X 
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. 

[3(J + 1)2 - N ( N  + 1) - 61 
+ ' 2 ( 2 N - 1 )  ( 2 N t 3 )  

- - -  

c 7-l 

and 

G2 Q3 

7 {N(. 1) ' 
[3J2 - N ( N +  1) - 61 

2 ( 2 N -  1) ( 2 N  +3)  
- - - 

where a, b, c and d are the coupling constants to be evaluated over the electronic 

wave function of the c3vu state and they are  defined in the following: 

(2-9) 
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and 

The coefficients Q,, Q,, Q3, a, ancl e3 appeared in (2-7) and (2-8) a re  define( 

as follows, 

Q1 = [ F ( F + l )  - J ( J + 1 )  - 2]/2 

Q, = [ ( F + J + 3 )  ( F + 1 - J )  ( F + J )  (J-F+2)]’/2/2 

( J + N + 3 )  ( J + N )  ( J - N + 2 )  
Q3 (25 + 1)  (2J + 3 )  

- 
Q, = [ ( F + J + 2 )  ( F + 2 - J )  ( F + J - 1 )  ( J - -F+l ) ] ’ / f /2  

3. THE CASE OF N = 1 

With all the matrix elements developed in the last section, we will now ex- 

press the hyperfine energy and the g, values for the rotational level N = 1. 

Substituting (2-7) and (2-8) into (1-5) we have, 
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and 

where 

and 
- 
P 1 0 ~  t 20b - t [3J2-  81 [ad - C-I 

The Q ' s  and a, b, c,  d are  defined in (2-10) and (2-9). - -  

For + values, we neglect the small correcting term g',") (second term) 

in Eq. (1-7), then, gb (J) = gL1) (J) and 

For the case of N = 1 ,  we have 

g,(O) ( J )  = 

3 (3-5) F(F+I) + J ( J t 1 )  - 2 F ( F t 1 )  - J ( J t 1 )  + 2 
4F(F + 1 )  (gs gN) 2F(F + 1) -1 

15 
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where P and are defined in Eq. (3-4), and g,= A/N ( N t . l ) =  1/2, g, = 2 and 

g, = 0.003038.- Since the wave function YJFMF is normalized up to the first order 

(see Eq. (1-3)), we therefore have18 

All  the values of gh0)  (J) for different N ' s  have been tabulatedl by using Eq. 

(3-5). We now summarize all the g(F1) (J) and E$:; (hfs) for the case of N = 1 

in the following, let 

K l  = a + 2p - ( f i d - c ) / 2  

K, a f 2b f 2 ( f i d - c ) / 5  

we have, 

g i ' )  (F = 1, J = 0)  = -5K1/3&3,,, (F 1) 

g i l )  (F = 1, J 1) 25K2/48AE, 2 (F= 1) f 5Kl/3m1,, (F = 1) 

gJ1) (F = 1, J = 2 )  = -25K2/48AE1,2 (F = 1) 

g i l )  (F = 2 ,  J 1) = 5K2/16m,,, (F = 2 )  

gJ') (F = 2 ,  J 2 )  -5K2/16AE1 , (F = 2 )  

g $ ' ) ( F  = 3 ,  J = 2 )  = g i 1 ) ( F  = 0, J = 1) 0 

16 
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E(,) (F = 1, J = 1) = 5(K,)2/48AE1,, (F 1) i- (Kl)2/3aEl,o (F = 1) 

E(,) (F 1, J 2)  = -5(K,)2/480E1,2 (F = 1) 

E(,) (F 2 ,  J = 1) 3(K,)2/16AE1,, (F = 2 )  

(3-10) 

Where the AEJ, J j  (F) ' s  a r e  defined in (3-3). Note that the sum rule relation 

(3-7) holds for the gL1)'s in (3-9) and a similar relation 

for E(,)  in (3-10). 

E::; = 0 also holds 
j 

Experimentally, one can determine the constants K, and K, from the fine 

structure and the hyperfine structure separations and the g$') values. Knowing 

K, and K, one can obtain the linear combinations, (a + 2b) and ( a d -  c),from 

Eq. (3-8). Measurements on N = 1 rotational level alone therefore cannot deter- 

mine the coupling constants a, b, c ,  and d independently. Additional measure- 

ments on N = 3 level will be needed to determine these hyperfine coupling 

constants independently. 
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4. COUPLING CONSTANTS 

The coupling constants a, b, C ,  and d are defined in (2-8). They have been 

evaluated by using a single configurational electronic wave function6 of the c3nu 

state. The wave function is a linear combination of the Heitler-Condon type with 

coefficient C, and ionic-type wave function with coefficient C, . Both types of 

wave function are made of Slater-type atomic orbitals of l s aand  2pn symmetry. 

For the orbital exponents CIS,  (= 1.24108) and <2plr(= 0.50282) the coefficients 

C, (= 0.2808) and C, (= 0.5612) are the values which minimize the total energy 

E (= -0.718793 a.u.) of the molecule in a c3nU state at equilibrium internuclear 

distance Re (= 1.96080 a.u.). The values of the coupling constants are evaluated 

n u m e r i ~ a l l y ~ ~  on the IBM 7094 computer, and they are the following. 

.- a = 17.44 Mc/Sec, -- b 545.27 Mc/Sec 

c = 28.95 Mc/Sec, d = -8.27 Mc/Sec 

Frey and Mizushima' have also computed these coupling constant by using 

Amemiya's wave function. 2o Their c and d values appear to be very different 

from ours.21 It seems that they may have defined their constants 

although the definition of coupling constants was not given by them. 

With the calculated coupling constants one can obtain all the first order 

gkl)  ' s  from Eq. (3-9) and the second order E ( 2 ) ' s  from Eq. (3-10). The g, values 

thus corrected by g(F1) 's give a better agreement with the experimental values3 

than the uncorrected g yJ ' s .  Since all the operators involved in calculating the 

coupling constants are one electron operators, a set of much improved coupling 
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cons Ants can therefore be calculated easily when an accurate electronic wave 

function for c3nU state is available. 
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